A clustering technique for digital communications channel equalization using radial basis function networks

نویسندگان

  • Sheng Chen
  • Bernard Mulgrew
  • Peter M. Grant
چکیده

The application of a radial basis function network to digital communications channel equalization is examined. It is shown that the radial basis function network has an identical structure to the optimal Bayesian symbol-decision equalizer solution and, therefore, can be employed to implement the Bayesian equalizer. The training of a radial basis function network to realize the Bayesian equalization solution can be achieved efficiently using a simple and robust supervised clustering algorithm. During data transmission a decision-directed version of the clustering algorithm enables the radial basis function network to track a slowly time-varying environment. Moreover, the clustering scheme provides an automatic compensation for nonlinear channel and equipment distortion. Computer simulations are included to illustrate the analytical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Comparative Study of Adaptive Channel Equalizer Based on Feed Forward Back Propagation, Radial Basis Function Neural Network(RBFNNs) & Least Mean Square (LMS) Algorithm

Artificial Neural networks (ANNs) have been extensively used in many signal processing applications. Linear & Nonlinear adaptive filters based on a variety of neural network models have been used successfully for system identification in a wide range of applications. Due to their capacity to form complex decision regions, ANNs have been most popularly applied, in particular, for channel equaliz...

متن کامل

Communication Channel Equalization Using Complex-Valued Minimal Radial Basis Function Neural Network

A complex radial basis function neural network is proposed for equalization of quadrature amplitude modulation (QAM) signals in communication channels. The network utilizes a sequential learning algorithm referred to as complex minimal resource allocation network (CMRAN) and is an extension of the MRAN algorithm originally developed for online learning in real-valued radial basis function (RBF)...

متن کامل

Channel Equalization Using Dynamic Fuzzy Neural Networks

Channel equalization is a major method for reducing distortion and interference effects on a communication channel. In this paper, channel equalization using soft computing methods is attempted. To be more specific, Dynamic Fuzzy Neural Networks (DFNN) which combines fuzzy rules and neural networks is adopted. The DFNN is functionally equivalent to a Takagi-Sugeno-Kang (TSK) fuzzy system posses...

متن کامل

Using an RBF network for blind equalization: design and performance evaluation

The design of adaptive equalizers is an important topic for practical implementation of e cient digital communications. In this paper, the application of a radial basis function neural network (RBF) for blind channel equalization is analysed. This architecture is well suited for equalization of nite impulse response (FIR) channels partly because the network model closely matches the data model....

متن کامل

A Radial Basis Function Network for Adaptive Channel Equalization in Coherent Optical OFDM Systems

Artificial neural network based equalizers can be used for equalization in coherent optical OFDM systems. The artificial neural network based multilayer layer perceptron is a feed-forward network consists of one hidden layer with one or more hidden nodes between its input and output layers and can be trained by using back propagation algorithm. However, this algorithm suffers from slow converge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 1993